Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Reserva 1. Año 2015

Paco Muñoz. IES Virgen de la Cabeza – Marmolejo (Jaén)

A.1.a)
$$A \cdot B^t = \begin{pmatrix} 4 & 6 \\ 13 & -5 \end{pmatrix}$$

A.1.b)
$$X = \frac{1}{2}(B - A) = \begin{pmatrix} \frac{1}{2} & \frac{-3}{2} \\ -1 & 3 \end{pmatrix}$$

A.1.c)
$$Y = B^{-1} \cdot \begin{pmatrix} 6 \\ 9 \end{pmatrix} = \begin{pmatrix} \frac{2}{7} & \frac{1}{7} \\ \frac{-1}{14} & \frac{3}{14} \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 9 \end{pmatrix} = \begin{pmatrix} \frac{3}{3} \\ \frac{3}{2} \end{pmatrix}$$

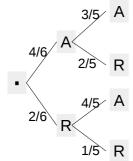
A.2.a) La curva es una parábola invertida, el máximo está en el vértice (o en uno de los extremos del intervalo de definición, si el vértice estuviera fuera de ese intervalo).

Vértice: $x = \frac{-b}{2a} = \frac{-0.5}{-0.002} = 250$. Para obtener el máximo se deben invertir 250.000 €.

A.2.b) Vértice: $x = \frac{-b}{2a} = \frac{-0.5}{-0.002} = 250$; y = R(250) = 65 . Se obtiene una rentabilidad de 65.000 €

A.2.c) Como es una parábola invertida, los mínimos están en los extremos del intervalo de definición:

$$f(1) = 2,999$$


$$f(500) = 2,5$$

La rentabilidad mínima se obtiene invirtiendo 500.000 €, siendo ésta de 2.500 €.

A.3.a) Los resultados de la segunda extracción son independientes de la primera, por lo que se tiene:

$$p(As1/As2)=p(As1)=4/6=0,67$$

A.3.b)

A Ahora los sucesos son dependientes:
$$p(As 1/As 2) = \frac{p(As 1 \cap As 2)}{p(As 2)} = \frac{\frac{4}{6} \cdot \frac{3}{5}}{\frac{4}{6} \cdot \frac{3}{5} + \frac{2}{6} \cdot \frac{4}{5}} = \frac{3}{5} = 0,6$$

$$\frac{4/5}{8}$$
A Ahora los sucesos son dependientes:

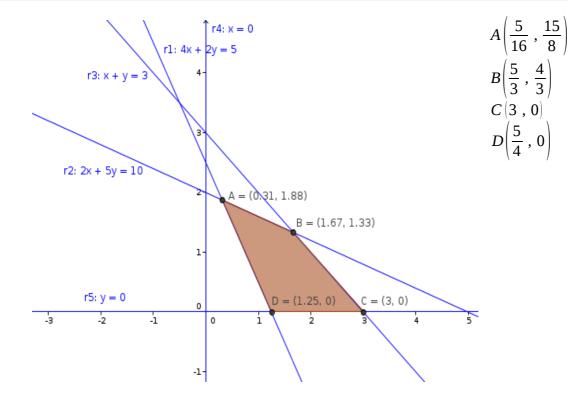
A.4) Contraste de hipótesis unilateral sobre la media.

 $H_0: \mu \le 170$ La talla media no ha aumentado; $H_1: \mu > 170$

$$p(z < z_{\alpha}) = 0.99$$
 ; $z_{\alpha} = 2.326$

Región crítica:
$$\left(\mu + z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, +\infty\right) = \left(171,74;+\infty\right)$$
.

Con ese nivel de aceptación, se acepta la hipótesis alternativa, la talla media ha aumentado.


SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Reserva 1. Año 2015

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

B.1.b)
$$F(A) = 65/16$$
; $F(B) = 13/3$; $F(C) = 3$; $F(D) = 5/4$

El valor máximo se alcanza con x = 5/3, y = 4/3 y tiene un valor de 13/3.

El valor mínimo se alcanza con x = 5/4, y = 0 y tiene un valor de 5/4.

B.2.a) Como es derivable en x = -1, también es continua. Se cumple:

$$f(-1) = \lim_{x \to -1^{-}} f(x) = \frac{-a - 12}{2} ; \frac{-a - 12}{2} = -1 - 2b$$

$$\lim_{x \to -1^{+}} f(x) = -1 - 2b$$

$$f'(x) = \begin{cases} \frac{1}{2}a, & si \ x < -1 \\ -2x + b, & si \ \ge -1 \end{cases}; \quad f'(-1^{-}) = \frac{1}{2}a; \quad \frac{1}{2}a = 2 + b$$

Tenemos por tanto el sistema de ecuaciones:

$$\begin{cases} \frac{-a-12}{2} = -1-2b \\ \frac{1}{2}a = 2+b \end{cases}$$
. Se resuelve y se obtiene $a = 18$, $b = 7$.

B.2.b) Punto:
$$x = -2$$
; $y = f(-2) = -7$

Pendiente: m = f'(-2) = 1/2

Recta tangente: t: y + 7 = 1/2(x + 2)

SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Reserva 1. Año 2015

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

B.3)

	A	A'	
В	6	7	13
B'	24	63	87
	30	70	100

a) 63% **b)**
$$p(A/B') = \frac{24}{87} = 0.28$$

B.4.a)
$$\bar{X} = \frac{3.5 + 4.25 + ... + 1.75 + 2.1}{10} = 2.7$$

$$p(z \le z_{\alpha/2}) = \frac{1+0.90}{2}$$
 ; $z_{\alpha/2} = 1.645$

Intervalo de confianza para la media: $(\bar{x}-z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}$, $\bar{x}+z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}})=(2,44$; 2,96)

B.4.b)
$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
 ; $n = \left(z_{\alpha/2} \cdot \frac{\sigma}{E}\right)^2 = 67,64$; La muestra debe ser de al menos 68 estudiantes