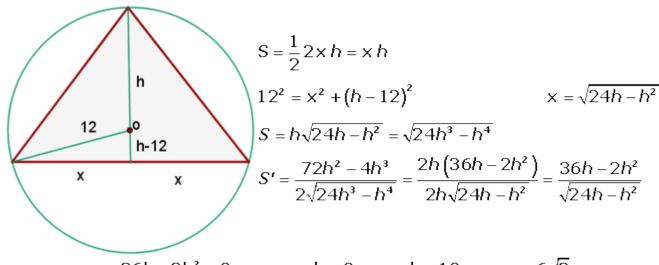
Ejercicios de Funciones: Optimización. L'Hôpital

1. Obtener el triángulo isósceles de área máxima inscrito en un círculo de radio 12 cm.



$$36h - 2h^2 = 0$$
 $h = 0$ $h = 18$ $x = 6\sqrt{3}$

Base: $2x = 12\sqrt{3}$

Lado:
$$I = \sqrt{x^2 + h^2}$$
 $I = \sqrt{36.3 + 18^2}$ $I = 12\sqrt{3}$

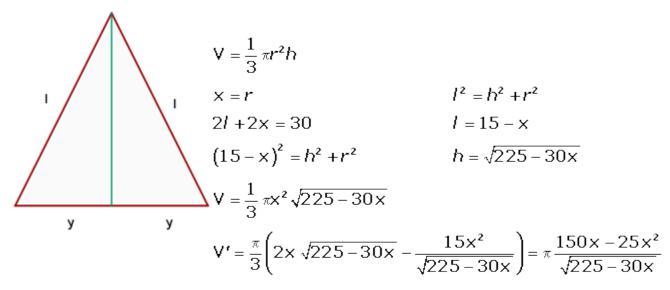
Se comprueba ahora que h = 18 es un máximo usando la segunda derivada.

$$S'' = \frac{\left(36 - 4h\right)\sqrt{24h - h^2} - \left(36h - 2h^2\right)\frac{24 - 2h}{2\sqrt{24h - h^2}}}{24h - h^2}$$

$$S''(18) = \frac{\left(36 - 4\cdot(18)\right)\sqrt{24\cdot(18) - (18)^2} - \left[36\cdot(18) - 2(18)^2\right]\frac{24 - 2(18)}{2\sqrt{24\cdot(18) - (18)^2}}}{24\cdot(18) - (18)^2}$$

$$S''(18) = \frac{\left(-\right)\cdot\left(+\right) - 0\cdot\dots}{24\cdot(18) - (18)^2} = \frac{\left(-\right)}{2} = -\frac{\left(-\right)}{2} = -\frac{\left(-\right)}$$

2. Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando un cono. ¿Qué valor debe darse a la base para que el volumen del cono sea máximo?



$$150x - 25x^2 = 0$$
 $x = 0$

$$X = 0$$

Base = 12 cm Se comprueba que x = 6 es un máximo con la derivada segunda:

$$V'' = \pi \frac{(150 - 50 \times) \sqrt{225 - 30 \times} - (150 \times - 25 \times^{2}) \frac{-15}{\sqrt{225 - 30 \times}}}{225 - 30 \times}$$
$$(150 - 50 \cdot (6)) \sqrt{225 - 30 \cdot (6)} - [150 \cdot (6) - 25 \cdot (6)^{2}] \frac{-15}{\sqrt{225 - 30 \times}}$$

$$\mathbf{V'''(6)} = \pi \frac{\left(150 - 50 \cdot (\mathbf{6})\right)\sqrt{225 - 30 \cdot (\mathbf{6})} - \left[150 \cdot (\mathbf{6}) - 25 \cdot (\mathbf{6})^2\right] \frac{-15}{\sqrt{225 - 30 \cdot (\mathbf{6})}}}{225 - 30 \cdot (\mathbf{6})} = \pi$$

$$V''(6) = \frac{(-) \cdot (+) - 0 \cdot ...}{+} = \frac{-}{+} = -$$

3. Se pretende fabricar una lata de conserva cilíndrica (con tapa) de 1 litro de capacidad. ¿Cuáles deben ser sus dimensiones para que se utilice el mínimo posible de metal?

$$A = 2\pi rh + 2\pi r^{2}$$

$$V = \pi r^{2}h$$

$$h = \frac{1}{\pi r^{2}}$$

$$A = 2\pi r \frac{1}{\pi r^{2}} + 2\pi r^{2} = \frac{2}{r} + 2\pi r^{2}$$

$$A' = -\frac{2}{r^{2}} + 4\pi r = \frac{-2 + 4\pi r^{3}}{r^{2}}$$

$$\frac{-2 + 4\pi r^{3}}{r^{2}} = 0$$

$$r^{3} = \frac{1}{2\pi}$$

$$h = \frac{\sqrt[3]{4\pi^{2}}}{\pi} = \sqrt[3]{\frac{4}{\pi}}$$

$$A'' = \frac{4}{r^{3}} + 4\pi$$

$$A'' \left(\frac{1}{\sqrt[3]{2\pi}}\right) > 0$$

4. Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo sea un mínimo.

$$S = 5x^{2} + 6y^{2}$$

 $x + y = 44$ $y = 44 - x$
 $S = 5x^{2} + 6(44 - x)^{2}$ $S' = 10x - 12(44 - x) = 22x - 528$
 $22x - 528 = 0$ $x = 24$ $y = 20$
 $S'' = 22 < 0$

5. Se tiene un alambre de 1 m de longitud y se desea dividirlo en dos trozos para formar con uno de ellos un círculo y con el otro un cuadrado. Determinar la longitud que se ha de dar a cada uno de los trozos para que la suma de las áreas del círculo y del cuadrado sea mínima.

$$S = \pi r^2 + l^2$$

$$2\pi r + 4l = 1$$

$$l = \frac{1 - 2\pi r}{4}$$

$$S = \pi r^{2} + \left(\frac{1 - 2\pi r}{4}\right)^{2} \qquad S' = 2\pi r + 2\frac{1 - 2\pi r}{4}\left(-\frac{2\pi}{4}\right) = \frac{\pi}{4}\left[r\left(8 + 2\pi\right) - 1\right]$$

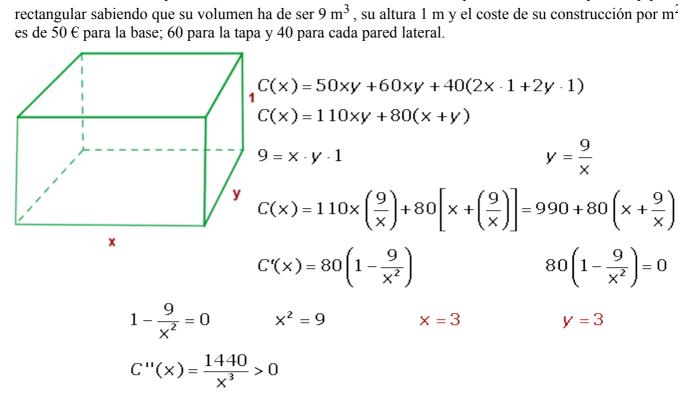
$$\frac{\pi}{4}\left[r\left(8 + 2\pi\right) - 1\right] = 0 \qquad \qquad r = \frac{1}{8 + 2\pi}$$

Trozo del círculo =
$$2\pi \frac{1}{8+2\pi}$$
 = 0.439 m

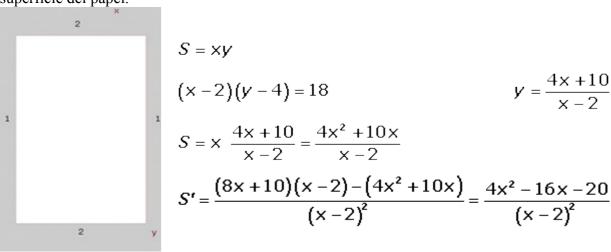
Trozo del cuadrado = 1 - 0.439 = 0.561m

$$S'' = \frac{\pi}{4} (8 + 2\pi) > 0$$

6. Hallar las dimensiones que hacen mínimo el coste de un contenedor que tiene forma de paralelepípedo rectangular sabiendo que su volumen ha de ser 9 m³, su altura 1 m y el coste de su construcción por m² es de 50 € para la base; 60 para la tapa y 40 para cada pared lateral.



7. Una hoja de papel debe tener 18 cm² de texto impreso, márgenes superior e inferior de 2 cm de altura y márgenes laterales de 1 cm de anchura. Obtener razonadamente las dimensiones que minimizan la superficie del papel.



$$\frac{4x^2 - 16x - 20}{(x - 2)^2} = 0 x = 5 x = -1 (No es válida)$$

- 8. El beneficio neto mensual, en millones de euros, de una empresa que fabrica autobuses viene dado por la función: $B(x)=1.2x-(0.1x)^3$, donde x es el número de autobuses fabricados en un mes.
 - 1 Calcula la producción mensual que hacen máximo el beneficio.
 - 2 El beneficio máximo correspondiente a dicha producción.

$$B(x) = 1.2x - (0.1x)^{3}$$

 $B'(x) = 1.2 - 3(0.1x)^{2} \cdot 0.1 = 1.2 - 0.003x^{2}$
 $1.2 - 0.003x^{2}$ $x^{2} = 400$ $x = 20$
 $B''(x) = -0.006x$ $B''(20) = -0.006 \cdot 20 < 0$
 $B(x) = 1.2 \cdot 20 - (0.1 \cdot 20)^{3} = 16$ millones

- **9.** Una huerta tiene actualmente 25 árboles, que producen 600 frutos cada uno. Se calcula que por cada árbol adicional plantado, la producción de cada árbol disminuye en 15 frutos. Calcular:
 - 1. La producción actual de la huerta.

Producción actual: $25 \cdot 600 = 15000$ frutos.

2. La producción que se obtendría de cada árbol si se plantan x árboles más.

Si se plantan x árboles más, la producción de cada árbol será: 600 – 15x.

3. La producción a la que ascendería el total de la huerta si se plantan x árboles más.

$$P(x) = (25 + x)(600 - 15x) = -15 x^2 + 225x + 1500$$

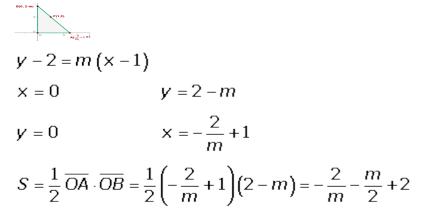
4. ¿Cuál debe ser el número total de árboles que debe tener la huerta para qué la producción sea máxima?

$$P'(x) = -0 x + 225 - 30x + 225 = 0 x = 7.5$$

 $P''(x) = -30 < 0$

La producción será máxima si la huerta tiene 25 + 7 = 32 o 25 + 8 = 33 árboles

10. Encontrar, de entre todas las rectas que pasan por por el punto (1, 2) aquella que forma con la partes positivas de los ejes de coordenadas un triángulo de área mínima.



$$\tilde{\pi}$$

$$S' = \frac{2}{m^2} - \frac{1}{2} = \frac{4 - m^2}{2m^2}$$

$$\frac{4-m^2}{2m^2}=0$$

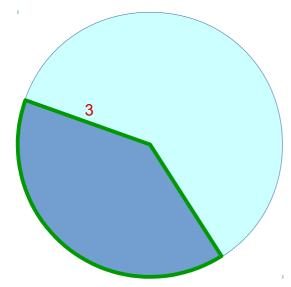
$$m = -2$$

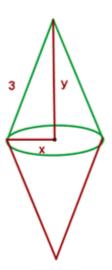
m = 2, en este caso no se formaría un triángulo porque las coordenadas de A y B coinciden con el origen de coordenadas.

$$S^{11} = \frac{-2}{m^3}$$

$$S''(-2) = \frac{-2}{(-2)^3} > 0$$

11. Una boya, formada por dos conos rectos de hierro unidos por sus bases ha de ser construido mediante dos placas circulares de 3 m de radio. Calcular las dimensiones de la boya para que su volumen sea máximo.





$$V = 2 \cdot \frac{1}{3} \pi x^{2} y$$

$$x^{2} + y^{2} = 9$$

$$V = 2 \cdot \frac{1}{3} \pi (9 - y^{2}) y = \frac{2\pi}{3} (9y - y^{3})$$

$$V' = \frac{2\pi}{3} (9 - 3y^{2})$$

$$\frac{2\pi}{3} (9 - 3y^{2}) = 0$$

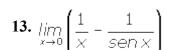
$$y = \sqrt{3}$$

$$r = \sqrt{6}$$

$$V'' = \frac{2\pi}{3} (-6y) < 0$$

12.
$$\lim_{x\to 0} \frac{e^{x} - e^{-x}}{\text{sen } x}$$

$$\lim_{x \to 0} \frac{e^{x} - e^{-x}}{\operatorname{sen} x} = \frac{0}{0} \qquad \lim_{x \to 0} \frac{e^{x} - e^{-x}}{\operatorname{sen} x} = \lim_{x \to 0} \frac{e^{x} + e^{-x}}{\operatorname{cos} x} = 2$$



$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{sen x} \right) = \infty - \infty$$

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{sen x} \right) = \lim_{x \to 0} \frac{sen x - x}{x sen x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{sen x - x}{x sen x} = \lim_{x \to 0} \frac{cos x - 1}{sen x + x cos x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{cos x - 1}{sen x + x cos x} = \lim_{x \to 0} \frac{-sen x}{cos x + cos x - x sen x} = 0$$

14.
$$\lim_{x \to \frac{\pi}{4}} (tg x - 1) sec 2x$$

$$\lim_{x \to \frac{\pi}{4}} (tg x - 1) sec 2x = 0 \cdot \infty$$

$$\lim_{x \to \frac{\pi}{4}} \frac{tg \times -1}{\cos 2x} = \frac{0}{0} \qquad \qquad \lim_{x \to \frac{\pi}{4}} \frac{tg \times -1}{\cos 2x} = \frac{1 + tg^2x}{-2 \operatorname{sen}2x} = -1$$

15.
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \frac{0}{0}$$

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{1}{x} = 1$$

16.
$$\lim_{x\to 0} \frac{\text{sen}3x}{x-\frac{3}{2}\text{sen}2x}$$

$$\lim_{x \to 0} \frac{\text{sen3x}}{x - \frac{3}{2} \text{sen2x}} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\sin 3x}{x - \frac{3}{2} \sin 2x} = \lim_{x \to 0} \frac{3\cos 3x}{1 - 3\cos 2x} = -\frac{3}{2}$$

17.
$$\lim_{x\to 0} (\operatorname{arc} \operatorname{sen} x \operatorname{cot} g x)$$

$$\lim_{x\to 0} (arc \ sen x \ cot g \ x) = 0 \cdot \infty$$

$$\lim_{x\to 0} (arc \ sen \ x \ cot \ g \ x) = \lim_{x\to 0} \frac{cos \ x \ arc \ sen \ x}{sen \ x} =$$

$$= \lim_{x \to 0} \frac{-\sec x \sec x + \frac{\cos x}{\sqrt{1 - x^2}}}{\cos x} = 1$$

18.
$$\lim_{x\to 0} \frac{\ln(1+x) - senx}{x senx}$$

$$\lim_{x\to 0} \frac{\ln(1+x) - senx}{x senx} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\ln(1+x) - senx}{x \, senx} = \lim_{x \to 0} \frac{\frac{1}{1+x} - \cos x}{senx + x \cos x} =$$

$$= \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2} + senx}{\cos x + \cos x - xsenx} = -\frac{1}{2}$$

19.
$$\lim_{X\to 0} \frac{1+\operatorname{sen} x - e^X}{\left(\operatorname{arc} \operatorname{tg} x\right)^2}$$

$$\lim_{x\to 0} \frac{1 + \operatorname{sen} x - e^x}{\left(\operatorname{arc} \operatorname{tg} x\right)^2} = \frac{0}{0}$$

$$\lim_{x\to 0} \frac{1+\operatorname{sen} x - e^{x}}{\left(\operatorname{arc} \operatorname{tg} x\right)^{2}} = \lim_{x\to 0} \frac{\cos x - e^{x}}{\frac{2\operatorname{arc} \operatorname{tg} x}{1+x^{2}}} =$$

$$= \lim_{x \to 0} \frac{\operatorname{sen} x - e^x}{2 - 4x \operatorname{arc} \operatorname{tg} x} = -\frac{1}{2}$$
$$\left(1 + x^2\right)^2$$

$$20. \lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right]$$

$$\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right] = \infty - \infty$$

$$\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right] = \lim_{x\to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{\ln(1+x) + \frac{x}{1+x}} = \lim_{x \to 0} \frac{\frac{1+x-1}{1+x}}{\frac{1+x}{1+x}} = \lim_{x \to 0} \frac{\frac{1}{1+x} - \frac{1}{1+x}}{\frac{1+x}{1+x}} = \lim_{x \to 0} \frac{x}{\ln(1+x) + x \ln(1+x) + x} = \lim_{x \to 0} \frac{1}{\frac{1}{1+x} + \ln(1+x) + \frac{x}{1+x} + 1} = \frac{1}{2}$$