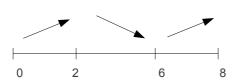
Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2013


Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

A.1.a)
$$A^2 = \begin{pmatrix} 4-a & -b-2 \\ ab+2a & b^2-a \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$$
 $\begin{cases} 4-a=5 \\ -b-2=-2 \\ ab+2a=-2 \\ b^2-a=1 \end{cases}$ $\begin{cases} a=-1 \\ b=0 \end{cases}$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}$$
 . Sí es simétrica.

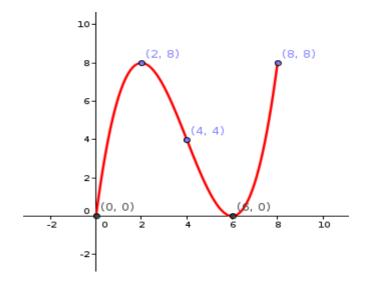
A.1.b)
$$A \cdot B = \begin{pmatrix} -5 & 2 \\ 0 & 3 \end{pmatrix}$$
 ; $X = \frac{1}{2} \cdot (A \cdot B) + 3I = \begin{pmatrix} \frac{1}{2} & 1 \\ 0 & \frac{9}{2} \end{pmatrix}$

A.2.a)
$$B'(t) = \frac{3t^2}{4} - 6t + 9$$
 . $B'(t) = 0$; $t = 6$; $t = 2$

B(0)=0; Mínimo absoluto.


B(2)=8; Máximo absoluto.

B(6)=0; Minimo absoluto.


B(8)=8; Máximo absoluto.

A.2.b) Estudiamos también la curvatura:

$$B''(t) = \frac{3t}{2} - 6$$
 . $B''(t) = 0$; $t = 4$

Hay un punto de inflexión en (4, 4)

Los beneficios de la empresa fueron aumentado los dos primeros años hasta conseguir un beneficio

SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2013

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza – Marmolejo (Jaén)

máximo de 8 millones de euros. A partir de ahí, empiezan a decrecer con bastante velocidad hasta el cuarto año, en que se produce un punto de inflexión, y siguen decreciendo, aunque con menos velocidad hasta el sexto año, en el que los beneficios son nulos. Ese año los beneficios vuelven a aumentar y lo hacen dos años más. En el octavo años los beneficios vuelven a ser máximos: 8 millones de euros.

A.3.a)

	TP	VP	A	
Н	19,25	21	7,2	47,45
M	35,75	9	7,8	52,55
	55	30	15	100

$$70\% \text{ de } 30 = 21$$

$$52\%$$
 de $15 = 7.8$

70% de 30 = 21
52% de 15 = 7,8
a)
$$p(H) = 47,45 = 0,4745$$

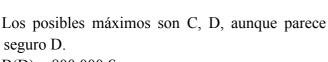
b)
$$p(A/H) = \frac{7.2}{47.45} = 0.1517$$

A.4.a)

$$P[Z \le z_{\alpha/2}] = \frac{1+p}{2} = \frac{1+0.94}{2} = 0.97 \quad \Rightarrow \quad z_{\alpha/2} = 1.88 \quad ; \quad \overline{p} = \frac{175}{500} = 0.35$$
 Intervalo de confianza para la proporción: $(\overline{p} - z_{\alpha/2} \cdot \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}, \overline{p} + z_{\alpha/2} \cdot \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}) = (0.31; 0.39)$

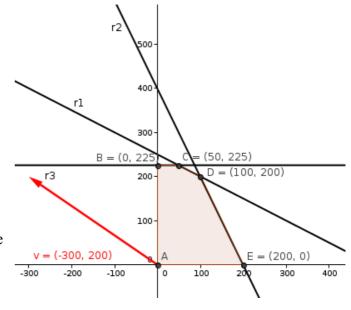
A.4.b)

$$E = z_{\alpha/2} \cdot \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$
; $n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \cdot \overline{p}(1-\overline{p}) = 2011,89$; La muestra debe ser de al menos 2012 peces


B.1.a) x: nº de tapices de tipo A y: nº de tapices de tipo B

seda: $x + 2y \le 500$

plata: $2x + y \le 400$

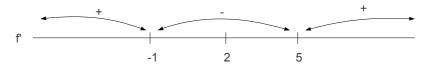

v≤225 oro: $x \ge 0$; $y \ge 0$

Beneficio: B(x, y) = 2000x + 3000y

 $B(D) = 800.000 \in$

B(C) = 775.000 €

Debe fabricar 100 tapices del tipo A y 200 del B para obtener un beneficio máximo: 800.000 € **B.1.b)** Sólo le sobrarán 25 kg de hilo de oro, pués el único límite al que no se ha llegado.


SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2013

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

B.2.a) Como la función derivada f' es una parábola, éstos serán los signos que tome:

Por tanto, la monotonía de la función f será:

B.2.b) Tiene un máximo en x = -1 y un mínimo en x = 5.

B.2.c)
$$r: y=f'(x_0)(x-x_0)+f(x_0)$$

 $f'(2)=-4 ; f(2)=5$
 $r: y=-4(x-2)+5 ; y=-4x+13$

B.3.a) p(B)=0.75 Como son independientes A y B: $p(A \cap B)=p(A) \cdot p(B)=0.3 \cdot 0.75=0.225$ $p(A \cup B)=0.3+0.75-0.225=0.825$

B.3.b)
$$p(A' \cap B') = p((A \cup B)') = 1 - 0.825 = 0.175$$

B.3.c)
$$p(A/B') = \frac{p(A \cap B')}{p(B')} = \frac{0.3 \cdot 0.25}{0.25} = 0.3$$

B.4.a) La media muestral está en el centro del intervalo de confianza, por tanto:

$$\overline{x} = \frac{188,18 + 208,82}{2} = 198,5$$

$$E = 208,82 - 198,5 = 10,32$$

$$z_{\alpha/2} = 2,576$$

$$n = \left(z_{\alpha/2} \cdot \frac{\sigma}{E}\right)^2 = 350$$

B.4.b)
$$E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} = 6.89$$