SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen 5. Año 2012

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

A.1) x: kg de manzanas de tipo A

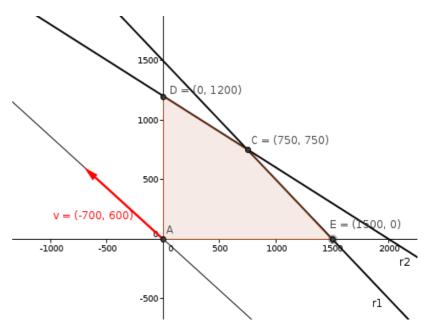
y: kg de manzanas de tipo B

kg: $x+y \le 1500$

 \in : 0,60 x + 1y \le 1200

 $x \ge 0$; $y \ge 0$

Beneficio: B(x, y) = 0.30 x + 0.35 y


Los posibles máximos son D, C, E

B(D) = 420 €

B(C) = 487,5 €

B(E) = 450 €

Debe comprar 750 kg de cada clase para obtener un beneficio máximo: 487,50 €

A.2.a) La función es una hipérbola, por

tanto tiene una asíntota vertical en el punto que anule el denominador: x = -b; como el problema dice que está en x = -2, debe ser b = 2.

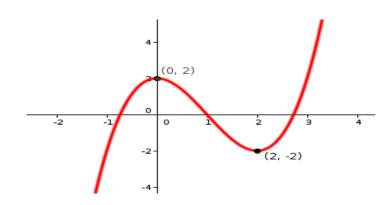
La asíntota horizontal está en $\lim_{x\to\infty} f(x)$. En este caso el límite vale a. Como el problema dice que está en y=3, debe ser a=3.

A.2.b) Dominio: La función es polinómica, por tanto $Dom f = \mathbb{R}$

Monotonía:

$$g'(x)=3x^2-6x$$
 ; $g'(x)=0$; $\begin{cases} x=0\\ x=2 \end{cases}$

$$\begin{cases} g'(-1) > 0 \\ g'(1) < 0 \\ g'(5) > 0 \end{cases}$$



Creciente en $(-\infty, 0) \cup (2, +\infty)$

Decreciente en (0, 3)

Máximo en x=0 ; y=2

Mínimo en x=2 ; y=-2

SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen 5. Año 2012

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza – Marmolejo (Jaén)

A.3)		A	В	C	
	D	3	1,2	0,3	4,5
	D'	57	28,8	9,7	95,5
		60	30	10	100

c)
$$p(A/D') = \frac{57}{95.5} = 60\%$$

A.4) Media de la muestra: $\bar{x} = 11$

a)
$$P[Z \le z_{\alpha/2}] = \frac{1+p}{2} = \frac{1+0.99}{2} = 0.995 \rightarrow z_{\alpha/2} = 2.576$$

Intervalo de confianza para la media: $(\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}) = (10.23; 11.77)$

b)
$$P[Z \le z_{\alpha/2}] = \frac{1+p}{2} = \frac{1+0.90}{2} = 0.95 \implies z_{\alpha/2} = 1.645$$

 $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$; $n = \left(z_{\alpha/2} \cdot \frac{\sigma}{E}\right)^2 = 24.35$; La muestra debe ser de al menos 25 elementos

B.1.a)
$$M = \begin{pmatrix} 2 & 1 \\ 5 & 3 \\ 100 & 80 \end{pmatrix}_{3 \times 2}$$

B.1.b)
$$A = \begin{pmatrix} 20 \\ 30 \end{pmatrix}$$
 ; $B = \begin{pmatrix} 30 \\ 20 \end{pmatrix}$

B.1.c)
$$M \cdot A = \begin{pmatrix} 70 \\ 190 \\ 4400 \end{pmatrix}$$
; $M \cdot B = \begin{pmatrix} 80 \\ 210 \\ 4600 \end{pmatrix}$ Disponemos de 96 huevos, 200 terrones y 5000 gr de harina. Para elaborar 20 y 30 miramos la matriz M·A y vemos que hay suficiente. Para 30 y 20 nos falta azúcar: 10 terrones.

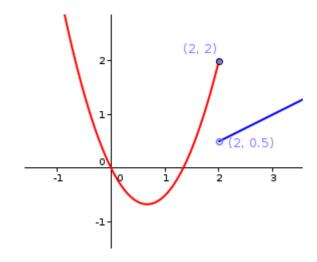
B.2.a) Continuidad: Los dos trozos son funciones polinómicas, por lo que sólo hay que estudiar x = 2.

$$f(2) = \lim_{x \to 2^{+}} f(x) = 4a - 4$$

 $\lim_{x \to 2^{+}} f(x) = 1 - b$ Por tanto, debe cumplirse $4a - 4 = 1 - b$; $b = 5 - 4a$

Mínimo en x = 1. El punto corresponde a la parábola; si es un mínimo, será el vértice. Lo calculamos: $v_1 = \frac{2}{2a}$; $\frac{2}{2a} = 1$; a = 1

Volvemos a la continuidad y se obtiene b=1.


SOLUCIONES

Prueba de Acceso a la Universidad. Universidades de Andalucía Examen 5. Año 2012

Matemáticas aplicadas a las CCSS II

Paco Muñoz. IES Virgen de la Cabeza - Marmolejo (Jaén)

B.2.b)

B.3)

	T	T'	
N	25	5	30
N'	65	5	70
	90	10	100

a) 5% de 400 = 20 alumnos

b)
$$p(N/T') = \frac{5}{10} = 50\%$$

B.4) Test de hipótesis unilateral sobre la proporción. H_0 : $p \ge 0.25$; H_1 p < 0.25

$$z_{\alpha} = 1,645$$

$$(p-z_{\alpha}\cdot\sqrt{rac{p(1-p)}{n}}$$
, $+\infty)=(0.2269$, $+\infty)$

Proporción de la muestra: 200 personas de 950 = 0,2105 . Cae fuera del intervalo de aceptación. No se acepta la hipótesis nula.